Thioctic acid derivatives as building blocks to incorporate DNA oligonucleotides onto gold nanoparticles.
نویسندگان
چکیده
Oligonucleotide gold nanoparticle conjugates are being used as diagnostic tools and gene silencing experiments. Thiol-chemistry is mostly used to functionalize gold nanoparticles with oligonucleotides and to incorporate DNA or RNA molecules onto gold surfaces. However, the stability of such nucleic acid-gold nanoparticle conjugates in certain conditions may be a limitation due to premature break of the thiol-gold bonds followed by aggregation processes. Here, we describe a straightforward synthesis of oligonucleotides carrying thioctic acid moiety based on the use of several thioctic acid-L-threoninol derivatives containing different spacers, including triglycine, short polyethyleneglycol, or aliphatic spacers. The novel thioctic-oligonucleotides were used for the functionalization of gold nanoparticles and the surface coverage and stability of the resulting thioctic-oligonucleotide gold nanoparticles were assessed. In all cases gold nanoparticles functionalized with thioctic-oligonucleotides had higher loadings and higher stability in the presence of thiols than gold nanoparticles prepared with commercially available thiol-oligonucleotides. Furthermore, the thioctic derivative carrying the triglycine linker is sensitive to cathepsin B present in endosomes. In this way this derivative may be interesting for the cellular delivery of therapeutic oligonucleotides as these results provides the basis for a potential endosomal escape.
منابع مشابه
Synthesis of DNA oligonucleotides containing 5-(mercaptomethyl)-2'-deoxyuridine moieties.
Recently thiolated oligonucleotides have attracted significant interest due to their ability to efficiently undergo stable bond formation with gold nanoparticles and surfaces to form DNA conjugates. In this respect we became interested in the synthesis of oligonucleotides that bear short thioalkyl functions located at the nucleobase. Here we present a strategy for the synthesis of DNA oligonucl...
متن کاملEnhanced oligonucleotide–nanoparticle conjugate stability using thioctic acid modified oligonucleotides
Metallic nanoparticles of gold functionalized with oligonucleotides conventionally use a terminal thiol modification and have been used in a wide range of applications. Although readily available, the oligonucleotide-nanoparticle conjugates prepared in this way suffer from a lack of stability when exposed to a variety of small molecules or elevated temperatures. If silver is used in place of go...
متن کاملA real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles
Here we report a real-time PCR-based method for determining the surface coverage of dithiol-capped oligonucleotides bound onto gold nanoparticles alone and in tandem with antibody. The detection of gold nanoparticle-bound DNA is accomplished by targeting the oligonucleotide with primer and probe binding sites, amplification of the oligonucleotide by PCR, and real-time measurement of the fluores...
متن کاملGeneral and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles
Metal-organic frameworks (MOFs) are a class of modular, crystalline, and porous materials that hold promise for storage and transport of chemical cargoes. Though MOFs have been studied in bulk forms, ways of deliberately manipulating the external surface functionality of MOF nanoparticles are less developed. A generalizable approach to modify their surfaces would allow one to impart chemical fu...
متن کاملHigh performance liquid chromatographic analysis of reduction products of a thiolated DNA for immobilization on gold nanoparticles
DNA-based nano-biosensors are emerging scope in the field of biosensors. Many synthetic single stranded functional DNAs have been applied for development of such sensors, recently. Immobilization of DNA oligonucleotides on the surface of gold nanoparticles is a key step in the development of most colorimetric nano-biosensors. The bound DNA is usually thiolated and forms Au-S covalent bond to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 19 7 شماره
صفحات -
تاریخ انتشار 2014